Extensions 1→N→G→Q→1 with N=C18 and Q=C22xC6

Direct product G=NxQ with N=C18 and Q=C22xC6
dρLabelID
C22xC6xC18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C18 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
C18:(C22xC6) = C23xC9:C6φ: C22xC6/C22C6 ⊆ Aut C1872C18:(C2^2xC6)432,559
C18:2(C22xC6) = C24x3- 1+2φ: C22xC6/C23C3 ⊆ Aut C18144C18:2(C2^2xC6)432,564
C18:3(C22xC6) = D9xC22xC6φ: C22xC6/C2xC6C2 ⊆ Aut C18144C18:3(C2^2xC6)432,556

Non-split extensions G=N.Q with N=C18 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
C18.1(C22xC6) = C2xC36.C6φ: C22xC6/C22C6 ⊆ Aut C18144C18.1(C2^2xC6)432,352
C18.2(C22xC6) = C2xC4xC9:C6φ: C22xC6/C22C6 ⊆ Aut C1872C18.2(C2^2xC6)432,353
C18.3(C22xC6) = C2xD36:C3φ: C22xC6/C22C6 ⊆ Aut C1872C18.3(C2^2xC6)432,354
C18.4(C22xC6) = D36:6C6φ: C22xC6/C22C6 ⊆ Aut C18726C18.4(C2^2xC6)432,355
C18.5(C22xC6) = D4xC9:C6φ: C22xC6/C22C6 ⊆ Aut C183612+C18.5(C2^2xC6)432,362
C18.6(C22xC6) = Dic18:2C6φ: C22xC6/C22C6 ⊆ Aut C187212-C18.6(C2^2xC6)432,363
C18.7(C22xC6) = Q8xC9:C6φ: C22xC6/C22C6 ⊆ Aut C187212-C18.7(C2^2xC6)432,370
C18.8(C22xC6) = D36:3C6φ: C22xC6/C22C6 ⊆ Aut C187212+C18.8(C2^2xC6)432,371
C18.9(C22xC6) = C22xC9:C12φ: C22xC6/C22C6 ⊆ Aut C18144C18.9(C2^2xC6)432,378
C18.10(C22xC6) = C2xDic9:C6φ: C22xC6/C22C6 ⊆ Aut C1872C18.10(C2^2xC6)432,379
C18.11(C22xC6) = C22xC4x3- 1+2φ: C22xC6/C23C3 ⊆ Aut C18144C18.11(C2^2xC6)432,402
C18.12(C22xC6) = C2xD4x3- 1+2φ: C22xC6/C23C3 ⊆ Aut C1872C18.12(C2^2xC6)432,405
C18.13(C22xC6) = C2xQ8x3- 1+2φ: C22xC6/C23C3 ⊆ Aut C18144C18.13(C2^2xC6)432,408
C18.14(C22xC6) = C4oD4x3- 1+2φ: C22xC6/C23C3 ⊆ Aut C18726C18.14(C2^2xC6)432,411
C18.15(C22xC6) = C6xDic18φ: C22xC6/C2xC6C2 ⊆ Aut C18144C18.15(C2^2xC6)432,340
C18.16(C22xC6) = D9xC2xC12φ: C22xC6/C2xC6C2 ⊆ Aut C18144C18.16(C2^2xC6)432,342
C18.17(C22xC6) = C6xD36φ: C22xC6/C2xC6C2 ⊆ Aut C18144C18.17(C2^2xC6)432,343
C18.18(C22xC6) = C3xD36:5C2φ: C22xC6/C2xC6C2 ⊆ Aut C18722C18.18(C2^2xC6)432,344
C18.19(C22xC6) = C3xD4xD9φ: C22xC6/C2xC6C2 ⊆ Aut C18724C18.19(C2^2xC6)432,356
C18.20(C22xC6) = C3xD4:2D9φ: C22xC6/C2xC6C2 ⊆ Aut C18724C18.20(C2^2xC6)432,357
C18.21(C22xC6) = C3xQ8xD9φ: C22xC6/C2xC6C2 ⊆ Aut C181444C18.21(C2^2xC6)432,364
C18.22(C22xC6) = C3xQ8:3D9φ: C22xC6/C2xC6C2 ⊆ Aut C181444C18.22(C2^2xC6)432,365
C18.23(C22xC6) = C2xC6xDic9φ: C22xC6/C2xC6C2 ⊆ Aut C18144C18.23(C2^2xC6)432,372
C18.24(C22xC6) = C6xC9:D4φ: C22xC6/C2xC6C2 ⊆ Aut C1872C18.24(C2^2xC6)432,374
C18.25(C22xC6) = D4xC54central extension (φ=1)216C18.25(C2^2xC6)432,54
C18.26(C22xC6) = Q8xC54central extension (φ=1)432C18.26(C2^2xC6)432,55
C18.27(C22xC6) = C4oD4xC27central extension (φ=1)2162C18.27(C2^2xC6)432,56
C18.28(C22xC6) = D4xC3xC18central extension (φ=1)216C18.28(C2^2xC6)432,403
C18.29(C22xC6) = Q8xC3xC18central extension (φ=1)432C18.29(C2^2xC6)432,406
C18.30(C22xC6) = C4oD4xC3xC9central extension (φ=1)216C18.30(C2^2xC6)432,409

׿
x
:
Z
F
o
wr
Q
<